import pandas as pd
x = pd.Series([1,2,3])
x
index values
--------------
0 1
1 2
2 3
x[0]
1
x = pd.Series([1,2,3], index=['a','b','c'])
x
index values
--------------
a 1
b 2
c 3
x['a']
1
data = {'abc': 1, 'def': 2, 'xyz': 3}
x = pd.Series(data)
x
index values
--------------
abc 1
def 2
xyz 3
x['abc']
1
The value gets repeated for each of the indexed defined.
x = pd.Series(1, index=['a','b','c'])
x
index values
--------------
a 1
b 1
c 1
import numpy as np
import pandas as pd
dates = pd.date_range('20200226', periods=3)
# DatetimeIndex(['2020-02-26', '2020-02-27', '2020-02-28'], dtype='datetime64[ns]', freq='D')
columns = list('ABC')
['A', 'B', 'C']
data = np.random.randn(3,3)
# array([[-0.10914734, -0.75659384, -0.06899813],
# [ 1.37714538, 2.09279708, -0.05586049],
# [ 0.2282605 , -1.54231927, -0.34941844]])
df = pd.DataFrame(data, index=dates, columns=columns)
df
index A B C
--------------------------------------------
2020-02-26 0.109953 -0.134801 0.023890
2020-02-27 1.417591 0.800834 0.145955
2020-02-28 -1.428734 0.438276 0.422585
df.describe()
A B C
-----------------------------------------
count 3.000000 3.000000 3.000000
mean -0.297529 -0.695912 0.751660
std 0.966246 1.045112 0.839380
min -1.155043 -1.624613 -0.167104
25% -0.820992 -1.261776 0.388307
50% -0.486941 -0.898940 0.943717
75% 0.131229 -0.231561 1.211043
max 0.749398 0.435818 1.478368
df.apply(np.cumsum)
A B C
---------------------------------------------
2020-02-26 -0.076596 -0.470757 0.109522
2020-02-27 1.390033 -0.875267 -1.120344
2020-02-28 1.504389 -0.522906 -3.327057